Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to construct, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes support finding out to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key identifying feature is its reinforcement learning (RL) step, which was utilized to fine-tune the model's responses beyond the standard pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, ultimately boosting both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, implying it's equipped to break down complicated questions and factor through them in a detailed manner. This directed reasoning procedure allows the design to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has captured the industry's attention as a flexible text-generation model that can be incorporated into numerous workflows such as agents, logical thinking and information interpretation jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, enabling efficient inference by routing questions to the most relevant expert "clusters." This approach enables the design to concentrate on various problem domains while maintaining general efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking abilities of the main R1 model to more based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more effective models to simulate the behavior and thinking patterns of the larger DeepSeek-R1 design, using it as a teacher design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, avoid damaging material, and assess designs against crucial security criteria. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop numerous guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you need access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, produce a limit increase demand and connect to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For guidelines, see Establish consents to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, avoid damaging content, and examine models against key safety criteria. You can implement precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and design responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic flow includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After receiving the model's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following areas demonstrate reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and choose the DeepSeek-R1 design.
The design detail page provides necessary details about the model's capabilities, pricing structure, and execution guidelines. You can find detailed use directions, consisting of sample API calls and code snippets for integration. The design supports numerous text generation tasks, consisting of material production, code generation, and question answering, utilizing its reinforcement discovering optimization and CoT reasoning capabilities.
The page likewise includes release alternatives and licensing details to assist you get going with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, select Deploy.
You will be triggered to configure the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, get in a variety of instances (in between 1-100).
6. For example type, choose your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can configure advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service role approvals, and file encryption settings. For a lot of utilize cases, the default settings will work well. However, for production deployments, you might wish to examine these settings to align with your organization's security and compliance requirements.
7. Choose Deploy to begin using the design.
When the implementation is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play area.
8. Choose Open in playground to access an interactive user interface where you can try out different prompts and change design specifications like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum results. For example, content for inference.
This is an exceptional way to check out the design's reasoning and text generation abilities before integrating it into your applications. The play area supplies instant feedback, assisting you understand how the model reacts to numerous inputs and letting you tweak your triggers for optimum outcomes.
You can quickly check the model in the play area through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to carry out reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up reasoning specifications, and sends a request to produce text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can release with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 convenient methods: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you select the technique that best fits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be prompted to produce a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design web browser shows available models, with details like the service provider name and model abilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card reveals crucial details, consisting of:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if applicable), suggesting that this model can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model
5. Choose the design card to see the model details page.
The design details page consists of the following details:
- The design name and provider details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the design, it's recommended to examine the design details and license terms to verify compatibility with your use case.
6. Choose Deploy to proceed with release.
7. For Endpoint name, use the instantly produced name or develop a customized one.
- For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the number of instances (default: 1). Selecting suitable instance types and counts is important for expense and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
- Review all setups for precision. For higgledy-piggledy.xyz this model, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to release the model.
The deployment process can take numerous minutes to finish.
When deployment is total, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning requests through the endpoint. You can keep track of the implementation progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is total, you can conjure up the design utilizing a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for releasing the model is offered in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To avoid unwanted charges, complete the actions in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments. - In the Managed implementations area, find the endpoint you want to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious solutions using AWS services and accelerated calculate. Currently, he is focused on developing methods for fine-tuning and enhancing the inference performance of large language models. In his spare time, Vivek takes pleasure in hiking, watching films, and attempting different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing options that assist consumers accelerate their AI journey and unlock company worth.