Files
Rainbond/gpushare-scheduler-extender/samples/docker/main.py
2025-08-25 16:04:00 +08:00

41 lines
1.2 KiB
Python

#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import tensorflow as tf
FLAGS = None
def train(fraction=1.0):
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = fraction
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = fraction
sess = tf.Session(config=config)
# Runs the op.
while True:
sess.run(c)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--total', type=float, default=1000,
help='Total GPU memory.')
parser.add_argument('--allocated', type=float, default=1000,
help='Allocated GPU memory.')
FLAGS, unparsed = parser.parse_known_args()
# fraction = FLAGS.allocated / FLAGS.total * 0.85
fraction = round( FLAGS.allocated * 0.7 / FLAGS.total , 1 )
print(fraction)
train(fraction)