#!/usr/bin/env python from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import tensorflow as tf FLAGS = None def train(fraction=1.0): config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = fraction a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = fraction sess = tf.Session(config=config) # Runs the op. while True: sess.run(c) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--total', type=float, default=1000, help='Total GPU memory.') parser.add_argument('--allocated', type=float, default=1000, help='Allocated GPU memory.') FLAGS, unparsed = parser.parse_known_args() # fraction = FLAGS.allocated / FLAGS.total * 0.85 fraction = round( FLAGS.allocated * 0.7 / FLAGS.total , 1 ) print(fraction) train(fraction)